Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods

نویسندگان

  • Benedikt Funke
  • Rafael Kawka
چکیده

In this article we propose two new Multiplicative Bias Correction (MBC) techniques for nonparametric multivariate density estimation. We deal with positively supported data but our results can easily be extended to the case of mixtures of bounded and unbounded supports. Both methods improve the optimal rate of convergence of the mean squared error up to O(n−8/(8+d)), where d is the dimension of the underlying data set. Moreover, they overcome the boundary effect near the origin and their values are always non-negative. We investigate asymptotic properties like bias and variance as well as the performance of our estimators in Monte Carlo Simulations and in a real data example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Estimation∗

This paper studies the effect of bias correction on confidence interval estimators in the context of kernel-based nonparametric density estimation. We consider explicit plug-in bias correction but, in contrast to standard approaches, we allow the bias estimator to (potentially) have a first-order impact on the distributional approximation. This approach is meant to more accurately capture the f...

متن کامل

Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval

We consider kernel-type methods for estimation of a density on [0, 1] which eschew explicit boundary correction. Our starting point is the successful implementation of beta kernel density estimators of Chen (1999). We propose and investigate two alternatives. For the first, we reverse the roles of estimation point x and datapoint Xi in each summand of the estimator. For the second, we provide k...

متن کامل

The Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel

One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of  kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...

متن کامل

Nonnegative bias reduction methods for density estimation using asymmetric kernels

Two classes of multiplicative bias correction (‘‘MBC’’) methods are applied to density estimation with support on [0, ∞). It is demonstrated that under sufficient smoothness of the true density, each MBC technique reduces the order of magnitude in bias, whereas the order of magnitude in variance remains unchanged. Accordingly, the mean integrated squared error of each MBC estimator achieves a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2015